AMBIENTLY UNIVERSAL SETS IN Eⁿ

BY

DAVID G. WRIGHT

ABSTRACT. For each closed set X in E^n of dimension at most n-3, we show that X fails to be ambiently universal with respect to Cantor sets in E^n ; i.e., we find a Cantor set Y in E^n so that for any self-homeomorphism h of E^n , h(Y) is not contained in X. This result answers a question posed by H. G. Bothe and completes the understanding of ambiently universal sets in E^n .

- **1. Introduction.** Let M and N be subsets of E^n . We say that M is ambiently embeddable in N if there is a homeomorphism h of E^n onto itself so that h(M) is a subset of N. Let F be a family of sets in some fixed E^n and U some fixed subset of E^n . We call U an ambiently universal set for the family F if each set in F is ambiently embeddable in U. For $0 \le m \le n$, a compact m-dimensional subset X in E^n is called a compact ambiently universal m-dimensional set if every compactum of dimension $\le m$ in E^n is ambiently embeddable in X.
- H. G. Bothe has made an extensive study of the existence of compact ambiently universal sets in E^n [Bo₁, Bo₂, Bo₃]. It seems to be well known that Bothe constructed a one-dimensional continuum in E^3 [Bo₄] similar to the McMillan-Row continuum [M-R]. However, it does not seem to be well known that his purpose was to exhibit a one-dimensional compactum in E^3 that is not ambiently embeddable in the Menger universal curve. We give a summary of Bothe's results.

In each E^n , Bothe constructed compact m-dimensional sets M_n^m , $0 \le m \le n$. For n = 2m + 1, M_n^m is the Menger universal set [H-W, p. 64]. He then showed that M_n^m is a compact ambiently universal m-dimensional set in E^n ($n \ne 3$) if and only if m > n - 3. For E^3 , M_3^m is a compact ambiently universal m-dimensional set if and only if m = 2 or 3. Bothe defined a condition on a set X in E^n which is now known as the dimension of embedding of X and sometimes written dem X [Ed]. He then showed that M_n^m is an ambiently universal set for all compact subsets X of E^n for which dim $X = \dim X$ and dim $X \le m$. Bothe showed that there does not exist a compact ambiently universal 0-dimensional set in E^3 . His proof that there is no compact ambiently universal 0-dimensional set in E^3 answered a question posed by R.H. Bing [Bi₁]. Interestingly, this problem has received recent attention and a new proof by M. Starbird and his students [S].

Received by the editors May 17, 1982. Presented at the 89th Annual Meeting of the A.M.S. on January 6, 1983 in Denver, Colorado.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54C25, 57N35; Secondary 57N12, 57N15.

Key words and phrases. Ambiently universal set, ambient embedding, Cantor set, n-dimensional Euclidean space.

D. G. WRIGHT

The question of the existence of compact ambiently universal m-dimensional sets in E^n for n > 3 and $m \le n - 3$ has remained open [$\mathbf{Bo_1}$, p. 204] until now. Our main theorem states that for each closed set X in E^n , dim $X \le n - 3$, there is a Cantor set Y in E^n so that Y is not ambiently embeddable in X. Hence, it is an easy corollary that there do not exist compact ambiently universal m-dimensional sets in E^n , $m \le n - 3$.

I thank John Walsh for patiently listening and for suggestions that are reflected in §7.

- 3. Antoine's necklace. We briefly review a specific construction of Antoine's necklace [A]. A *solid torus* is a topological space homeomorphic to $B^2 \times S^1$. Consider the embedding of four solid tori T_1 , T_2 , T_3 , T_4 in a solid torus T as shown in Figure 1. We call this embedding an Antoine embedding.

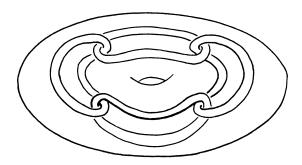


FIGURE 1

We construct Antoine's necklace, a Cantor set in E^3 , $A = \bigcap M_i$, where for each nonnegative integer i, M_i is a collection of 4^i disjoint solid tori. We let M_0 be an unknotted solid torus in E^3 . The collection M_{i+1} is obtained by taking an Antoine embedding of solid tori in each component of M_i . By exercising care so that the diameters of the components of M_i approach zero as i gets large, the set $A = \bigcap M_i$ will be a Cantor set.

- **4. I-inessential disks with holes and ramification techniques.** Let H be a disk with holes and $f: H \to M$ a map into a manifold M so that $f(Bd H) \subseteq Bd M$. Following Daverman $[\mathbf{D_2}]$ we call the map f *I-inessential* (interior inessential) if there is a map \tilde{f} from H into Bd M with $f \mid Bd H = \tilde{f} \mid Bd H$. We now state without proof a relationship between I-inessential maps and Antoine Cantor sets (see $[\mathbf{D_2}]$ for a more detailed discussion).
- LEMMA 4.1. Let H be a disk with holes and $f: H \to M$, $f(Bd H) \subseteq Bd M$, be a map where M is a component in some stage of the construction of Antoine's necklace in E^3 . If f(H) misses the Cantor set, then the map f is I-inessential.
- Let M be a closed manifold. Consider the manifold $B^2 \times M$. For a positive integer m, choose m pairwise disjoint subdisks D_1, \ldots, D_m of Int B^2 and form m "parallel" copies of $B^2 \times M$ by taking $D_1 \times M, \ldots, D_m \times M$. We call the set $\bigcup D_i \times M$ an m-fold ramification of $B^2 \times M$ [D_1 , Ea].
- Let $\alpha = a_0, a_1, a_2,...$ be a sequence of positive integers. We construct a ramified Antoine's necklace with respect to α as the intersection of nested manifolds $M_0, M_1, M_2,...$ The set M_0 is a single unknotted solid torus in E^3 . Let i be a nonnegative integer. The manifold M_{2i+1} is obtained by taking an a_i -fold ramification of each component of M_{2i} . The manifold M_{2i+2} is obtained by taking an Antoine embedding of solid tori in each component of M_{2i+1} . Exercising due care to insure that the diameters of the components get small as i gets large yields the desired ramified Antoine's necklace as the intersection of the M_i .

We call the M_i a special defining sequence for the ramified Antoine's necklace. Notice that in M_{2i} we can find 4^i components which we designate by \tilde{M}_{2i} so that \tilde{M}_{2i} is embedded in M_0 in the same manner as the *i*th stage of the Antoine necklace construction is embedded in the first stage.

We now give the obvious generalization of Lemma 4.1 to a ramified Antoine's necklace.

- LEMMA 4.2. Let H be a disk with holes and $f: H \to M$, $f(Bd H) \subset Bd M$, be a map where M is a component in some stage of the construction of a ramified Antoine's necklace in E^3 . If f(H) misses the Cantor set, then the map f is I-inessential.
- 5. There is no ambiently universal Cantor set in E^3 . In this section we prove our main result in E^3 . Bothe [Bo₂] and more recently Starbird and his students [S] have proved this theorem. Our proof uses techniques found in both of the previous proofs. This section will serve as a warm-up for the proof in higher dimensions since the strategy is similar. However, some of the techniques will be discarded when we approach the proof in higher dimensions.
- THEOREM 5.1. For each closed 0-dimensional set X in E^3 there is a Cantor set Y so that Y is not ambiently embeddable in X.
- PROOF. Let X be a fixed 0-dimensional set. Let T_i , i = 0, 1, 2, ..., be a sequence of all unknotted PL solid tori in E^3 all of whose vertices have rational coordinates. In T_i choose $4^i + 1$ disjoint meridional disks. For each disk it is possible to find a

compact 3-manifold that contains the disk in its interior, misses all other disks, and the boundary of the 3-manifold misses X. Let a_i be a positive integer so that for any disk D of the $4^i + 1$ meridional disks, it is possible to find a compact 3-manifolds N so that $D \subset \text{Int } N$, N misses the other 4^i meridional disks, $\text{Bd } N \cap X = \emptyset$, and the number of handles in the 2-manifold Bd N is less than a_i .

Let Y be a ramified Antoine's necklace in E^3 with respect to the sequence a_i , and let M_i be a special defining sequence for Y. We now show $h(Y) \not\subset X$ for any homeomorphism h.

Suppose $h(Y) \subset X$ for some self-homeomorphism h of E^3 . Without loss of generality $h(M_0)$ is a PL solid torus, and we suppose $h(M_0) = T_i$. To further simplify the proof we also suppose that h is the identity homeomorphism.

We choose the union of 4^i components of M_{2i} , denoted \tilde{M}_{2i} , so that \tilde{M}_{2i} is embedded in M_0 in the same manner as the *i*th stage of the Antoine necklace construction is embedded in the 0th stage. Now each meridional disk in $M_0 = T_i$ must contain a meridional simple closed curve of some component of \tilde{M}_{2i} . Hence of the prechosen $4^i + 1$ meridional disks of T_i , we can find two disks D_1 and D_2 , and a component W of \tilde{M}_{2i} so that $W \cap D_1$ and $W \cap D_2$ each contain a meridional simple closed curve of Bd W.

Let N be a compact PL 3-manifold so that $D_1 \subset \text{Int } N$, $N \cap D_2 = \emptyset$, Bd $N \cap X = \emptyset$, and the number of handles of Bd N is less than a_i . In Bd N we find a 2-manifold M such that Bd M links W. The proof of this fact is somewhat technical and we defer the proof to the end of this section.

Let W(1), W(2),..., $W(a_i)$ be the components of M_{2i+1} that lie inside W. We assume that W(j) is in general position with respect to the 2-manifold M. Since the number of handles of M is less than the number of handles of M, some one of the W(j), which we designate W', must have the property that $W' \cap M$ is a 2-manifold with no handles; i.e., each component of $W' \cap M$ is a disk with holes. Furthermore, since $Y \cap M = \emptyset$, the inclusion of each component of $W' \cap M$ into W' is I-inessential. This implies that M does not link M'. Since M' is "parallel" to M, M must link both M and M' or neither M nor M'. We are led to a contradiction from our supposition that $M(Y) \subset X$. We are therefore forced to conclude that $M(Y) \not\subset X$. Our proof is now complete with the exception of the following lemma.

LEMMA 5.2. Let D_1 and D_2 be disks in E^3 , N a compact 3-manifold $D_1 \subset Int N$, $N \cap D_2 = \emptyset$, and W a solid torus so that $W \cap D_1$ and $W \cap D_2$ each contain a meridional simple closed curve of Bd W. Then there is a 2-manifold M contained in Bd N so that Bd M links W.

PROOF. Let \tilde{W} be a small regular neighborhood of W so that Bd \tilde{W} is in general position with Bd N. Let J_1 and J_2 be meridional simple closed curves of \tilde{W} so that $J_1 \subset \text{Int } N, J_2 \cap N = \emptyset$, and J_1, J_2 each bound homologically in the complement of Bd N. Choose an annulus A in Bd \tilde{W} with boundary components J_1 and J_2 . Let J be the collection of all simple closed curves, of $A \cap \text{Bd } N$. Orient the simple closed curves of J consistent with some orientation on $A \cap N$. Hence, as a 1-cycle, J is homologous to J_1 in Bd \tilde{W} , and J links W in E^3 . Using $A \cap N$ it is easy to see that J

bounds a 2-cycle in N. Similarly, J bounds a 2-cycle in closure $(E^3 - N)$. Therefore, a Mayer-Vietoris argument shows that J also bounds homologically in Bd N.

We now use geometric interpretations of homology theory to show the existence of the desired 2-manifold M with Bd $M \subset J$. We assume the Bd N has an oriented triangulation so that J is contained in the 1-skeleton. By simplicial homology theory $J = \partial \Sigma \alpha_i \sigma_i$ where α_i are integers and the σ_i are all of the finitely many oriented 2-simplexes of the triangulation of Bd N. Let $\alpha = \max\{\alpha_i\}$ and set $M' = \bigcup \{\sigma_i \mid \alpha_i = \alpha\}$. One readily checks that M' is a 2-manifold, Bd $M' \subset J$, and Bd M' is oriented in the same manner as J. If Bd M' links W, let M = M'; otherwise, consider $J' = J - \operatorname{Bd} M'$. Then J' must link W and be null homologous in Bd N. Since J' has fewer components than J, an inductive argument on the number of components of J yields the desired manifold M.

6. Bing Cantor sets. R. H. Bing's proof that the sewing of two Alexander horned spheres yields S^3 [Bi₂] consisted in showing that a Cantor set could be described in E^3 as the intersection of manifolds M_i , $i = 0, 1, 2, \ldots$ The manifold M_0 is an unknotted solid torus. Each component of M_i is a solid torus and contains two components of M_{i+1} which are embedded as shown in Figure 2. Bing's clever proof showed that the M_i could be chosen in such a manner that the diameters of the components of M_i tend to zero as i gets large. The intersection of the M_i yields a Cantor set in E^3 which we call a *Bing Cantor set*.

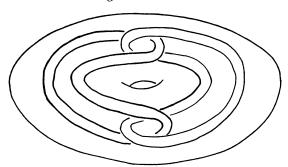


FIGURE 2

Consider the 3-cell A in $E_+^3 = \{(x, y, z) \in E^3 \mid z \ge 0\}$ that contains two properly embedded arcs A_1 and A_2 as shown in Figure 3. Notice that Figure 2 can be obtained from Figure 3 by reflecting through the x-y plane and thickening the resulting simple closed curves. By spinning E_+^3 into E^n ($n \ge 3$) [C-D] we then obtain as the spin of A a manifold T homeomorphic to $B^2 \times S^{n-2}$ that contains the spin of A_1 and the spin of A_2 , two geometrically linked (n-2)-spheres, denoted by S_1 and S_2 , in the interior of T. Notice that there are obvious (n-1)-cells D_1 , D_2 in Int T so that $S_i = \operatorname{Bd} D_i$ (i = 1, 2) and $D_i \cap S_j$ [(i, j) = (1, 2), (2, 1)] is homeomorphic to S^{n-3} . Observe that $D_1 \cup S_2$ contains a core of T so that any map $f: X \to E^n - (D_1 \cup S_2)$ is homotopic to a map to E^n —Int T, the homotopy fixing points in $f^{-1}(E^n - \operatorname{Int} T)$. For n > 3 it is also true that a map $g: S^1 \to D_i - S_j$ [(i, j) = (1, 2), (2, 1)] is null homotopic in $D_i - S_j$ if and only if g does not link S_j in E^n . This last fact is not true for n = 3.

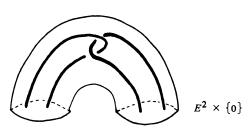


FIGURE 3

Let T_1 and T_2 be disjoint regular neighborhoods of S_1 and S_2 in Int T. We construct generalizations of the Bing Cantor set in E^n as the intersection of nested manifolds W_i , $i=0,1,2,\ldots$ The manifold W_0 is an unknotted $B^2\times S^{n-2}$ in E^n , and each component of W_i contains two components of W_{i+1} which are embedded in W_i in the same manner as $T_1 \cup T_2$ is embedded in T. It is a consequence of [C-D, §8] that the W_i may be chosen so that the diameters of the components tend to zero as i gets large. We also call the intersection of the W_i a Bing Cantor set.

Of course the ramification process of §4 can be applied to Bing Cantor sets to obtain ramified Bing Cantor sets.

7. The I-inessential property revisited. Let H be a disk with holes and $f: H \to M$, $f(Bd H) \subset Bd M$, a map where M is a component in some stage of the construction of a Bing Cantor set in E^n (n > 3). The arguments of §4 can be generalized to show that if f(H) misses the Bing Cantor set, then the map f is I-inessential. However, we will have need of the above fact when H is a compact 2-dimensional polyhedron that behaves like a disk with holes. By a 2-dimensional polyhedron we will always mean a polyhedron that is strictly 2-dimensional, i.e., each open subset is 2-dimensional.

DEFINITION 7.1. Let P be a compact 2-dimensional polyhedron. For some fixed triangulation T of P, let boundary of P be the union of all 1-simplexes of T that are the face of exactly one 2-simplex of T. Clearly this is independent of the choice of the triangulation since we could also define the boundary to be the closure of the set $\{x \in P \mid H_2(P, P - x) = 0\}$ as is done in defining the boundary of a homology manifold [Sp, p. 277]. We let Bd P denote the boundary of P, and we define the interior of P, denoted Int P, to be P - Bd P.

DEFINITION 7.2. Let Q be a compact 2-dimensional polyhedron. We call Q a pseudo disk with holes if for each $\alpha \in H_1(Q)$ there is a nonzero integer m so that $m\alpha$ is in the image of $H_1(Bd Q)$ under the inclusion induced homomorphism.

DEFINITION 7.3. Let f be a map of a pseudo disk with holes Q into a manifold M so that $f(\operatorname{Bd} Q) \subseteq \operatorname{Bd} M$. We call the map f I-inessential (interior inessential) if there is a map \tilde{f} from Q into $\operatorname{Bd} M$ with $\tilde{f} | \operatorname{Bd} Q = f | \operatorname{Bd} Q$. Otherwise the map f is I-essential.

THEOREM 7.4. Let Q be a pseudo disk with holes. If P is a compact 2-dimensional subpolyhedron of Q so that Int P is an open subset of Q, then P is a pseudo disk with holes.

PROOF. Let γ be a 1-cycle in P. By hypothesis there is a nonzero integer m so that $m\gamma$ is homologous in Q to a 1-cycle β of Bd Q. Notice that Bd $Q \subset Q$ — Int P.

Consider the following Mayer-Vietoris sequence:

$$\rightarrow H_1(\operatorname{Bd} P) \rightarrow H_1(P) \oplus H_1(Q - \operatorname{Int} P) \rightarrow H_1(Q) \rightarrow .$$

Since the element represented by $m\gamma \oplus (-\beta)$ is sent to zero, we can find a 1-cycle δ in Bd P that is homologous to $m\gamma$ in P.

THEOREM 7.5. Let P be a compact 2-dimensional polyhedron. Suppose Q_1, Q_2, \ldots, Q_n are disjoint 2-dimensional subpolyhedra with Int Q_i an open subset of P for each i. If $n > \text{rank } H_1(P)$, then some Q_i is a pseudo disk with holes.

PROOF. Suppose each Q_i is not a pseudo disk with holes. Choose γ_i a 1-cycle in Q_i so that no nonzero multiple of γ_i represents an element of $H_1(Q_i)$ that is the image of $H_1(\operatorname{Bd} Q_i)$ under the inclusion induced homomorphism. Since $n > \operatorname{rank} H_1(P)$, there exist integers m_1, m_2, \ldots, m_n , not all zero, so that $m_1\gamma_1 + m_2\gamma_2 + \cdots + m_n\gamma_n$ is null homologous in P. Without loss of generality, assume $m_1 \neq 0$. A Mayer-Vietoris argument applied to Q and $P - \operatorname{Int} Q_1$ shows there is a 1-cycle β in $Q_1 \cap (P - \operatorname{Int} Q_1) = \operatorname{Bd} Q_1$ that is homologous to $m_1\gamma_1$ in Q_1 . This contradicts the choice of γ_1 and the theorem is proved.

Let $T, T_1, T_2, S_1, S_2, D_1, D_2$ be defined as in §6.

THEOREM 7.6. Let $f: Q \to T \subset E^n$ (n > 3) be an I-essential map from a pseudo disk with holes so that f is in general position with respect to $T_1 \cup T_2$. Let $Q_i = f^{-1}(T_i)$, i = 1, 2. Then $f | Q_i: Q_i \to T_i$ is an I-essential map from a pseudo disk with holes for i = 1 or i = 2.

PROOF. By Theorem 7.4 one easily checks that Q_i is either empty or a pseudo disk with holes for each i. If $f \mid Q_i$ fails to be I-essential for each i, then we may find a new map $f_1: Q \to T - (S_1 \cup S_2)$ that agrees with f on Bd Q and is in general position with respect to the (n-1)-cell D_1 .

Let $\Gamma = f_1^{-1}(D_1)$. We now show $f_1 \mid \Gamma \colon \Gamma \to \operatorname{Int} D_1 - S_2$ induces the trivial homomorphism between the first homology groups. Suppose not. Then there is a 1-cycle γ in Γ so that $f_1(\gamma)$ is a 1-cycle in $\operatorname{Int} D_1$ that links $D_1 \cap S_2$. Hence $f_1(\gamma)$ links S_2 in E^n . Since Q is a pseudo disk with holes, there is a 1-cycle β in $\operatorname{Bd} Q$ so that β is homologous to $m\gamma$ in Q for some nonzero integer m. Since $m \neq 0$, $mf_1(\gamma)$ also links S_2 . Because the support of $f_1(\beta)$ is in $\operatorname{Bd} M$, $f_1(\beta)$ does not link S_2 . But this is impossible since $f_1(\beta)$ is homologous to $mf(\gamma)$ in $E^n - S_2$. Hence, f_1 induces the trivial homomorphism on first homology.

Since the fundamental group of Int $D_1 - S_2$ is the same as the first homology group, we find that $f_1 | \Gamma$: $\Gamma \to \text{Int } D_1 - S_2$ is homotopic to a constant map. Using this fact and the collar structure on D_1 , we can find a new map f_2 of Q into T that agrees with f_1 on Bd Q and misses $D_1 \cup S_2$. Recall that $D_1 \cup S_2$ contains a core of T, and we can modify f_2 to get a map f_3 : $Q \to \text{Bd } T$ agreeing with f_2 on Bd Q. This contradicts the fact that f is I-essential, and our theorem is proved.

Theorem 7.6 and standard techniques now give our required generalization of the first paragraph of this section which we now state.

THEOREM 7.7. Let Q be a pseudo disk with holes and $f: Q \to M$, $f(BdQ) \subset BdM$, a map where M is a component in some stage of the construction of a (ramified) Bing Cantor set in E^n (n > 3). If f(Q) misses the Cantor set, then the map f is I-inessential.

THEOREM 7.8. Let M be a PL n-manifold in E^n and $f: P \to E^n$ a map from a polyhedron. Suppose $Q = f^{-1}(M)$ is a subpolyhedron of P that is a pseudo disk with holes whose interior is open in P and $f \mid Q: Q \to M$ is I-inessential. If γ is a 1-cycle in P - Q that bounds homologically in P, then $f(\gamma)$ bounds homologically in $E^n - M$.

PROOF. Since f | Q is I-inessential and Int Q is open in P, we can find a new map $f': P \to E^n$ — Int T, agreeing with f on P — Int Q. Since γ bounds in P, $f'(\gamma)$ bounds in f'(P). Hence $f'(\gamma)$ bounds in E^n — Int T and, therefore, in E^n — T. But $f(\gamma) = f'(\gamma)$ and our proof is complete.

8. Linking Bing Cantor sets. Let $T, T_1, T_2, S_1, S_2, D_1, D_2$ be as defined in §6.

THEOREM 8.1. Let $f: M \to E^n$ (n > 3) be a PL map in general position from a compact orientable 2-manifold M so that $f \mid Bd M \ links \ Int T$. Then there is a simple closed curve J in M so that $f \mid J \ links \ either \ T_1 \ or \ T_2$.

PROOF. We first consider the case where f(M) misses $T_1 \cup T_2$. We assume that f is in general position with respect to D_1 so that $f^{-1}(D_1)$ is a finite collection of disjoint simple closed curves in M. If f restricted to any of the simple closed curves links T_2 we are done. Otherwise, f restricted to each simple closed curve is null homotopic in $D_1 - S_2$, and the manifold M can be surgered to obtain a new manifold M' and a map $f' \colon M' \to E^n$ so that Bd $M = \operatorname{Bd} M'$, $f \mid \operatorname{Bd} M = f' \mid \operatorname{Bd} M'$, and f'(M') misses $D_1 \cup S_2$. But this implies that $f \mid \operatorname{Bd} M = f \mid \operatorname{Bd} M'$ does not link Int T which is a contradiction.

If f(M) meets $T_1 \cup T_2$, we take small regular neighborhoods T_1' and T_2' of T_1 and T_2 , respectively, so that f is in general position with respect to T_1' and T_2' . Hence, $f^{-1}(\operatorname{Bd} T_1' \cup \operatorname{Bd} T_2')$ is a finite collection of disjoint simple closed curves. If f restricted to any of these simple closed curves is not null homotopic in $\operatorname{Bd} T_1' \cup \operatorname{Bd} T_2'$, we are done (requires n > 3). If f restricted to each simple closed curve is null homotopic in $\operatorname{Bd} T_1' \cup \operatorname{Bd} T_2'$, then M can be surgered on its interior to obtain a 2-manifold M' and a map $f' \colon M' \to E^n$ so that $\operatorname{Bd} M = \operatorname{Bd} M'$, $f \mid M \cap M' = f' \mid M \cap M'$, M' - M is a collection of disks in the interior of M', and f'(M') misses $\operatorname{Bd} T_1' \cup \operatorname{Bd} T_2'$. By ignoring any components of M' that are sent by f to $\operatorname{Int}(T_1' \cup T_2')$, we may assume that f'(M') misses $T_1 \cup T_2$. By the previous case there is a simple closed curve f in f'(M') misses $f'(M') \cap f'(M')$ in $f'(M') \cap f'($

Let W_0, W_1, \ldots, W_m be nested manifolds in E^n as given in the construction of the Bing Cantor set in §6.

THEOREM 8.2. Let $A_0 \subset A_1 \subset \cdots \subset A_m$ be absolute neighborhood retracts in E^n (n > 3) so that the inclusion $A_{i-1} \subset A_i$ induces the trivial map on first homology, $1 \le i \le m$. If $f_0: S^1 \to A_0$ is a map that links W_0 in E^n , then there is a map $f_i: S^1 \to A_i$ that links some component of W_i .

PROOF. The proof is by induction. Suppose $f_i: S^1 \to A_i$ is given so that f_i links some component T of W_i . Since the inclusion from A_i into A_{i+1} is trivial on first homology, we find an orientable 2-manifold M and a map $f: M \to A_{i+1}$ so that $f \mid Bd M links <math>T$. Let T'_1, T'_2 be small regular neighborhoods of the components T_1, T_2 of W_{i+1} in T, respectively. Let \tilde{f} be a close approximation to f that is in general position, the closeness will be stipulated later. By Theorem 8.2 there is a simple closed curve J in M so that $\tilde{f} \mid J$ links T'_1 or T'_2 . Since A_{i+1} is an absolute neighborhood retract, then $\tilde{f} \mid J$ is homotopic to a map $g: J \to A_{i+1}$. We now assume f is close enough to f so that the image of the homotopy misses $T_1 \cup T_2$. Let f be a homeomorphism from f to f. Then $f_{i+1} = g \circ h$ is the desired map.

9. The *n*-dimensional theorem (n > 3).

THEOREM 9.1. Each closed set X in E^n (n > 3) of dimension at most (n - 3) fails to be ambiently universal with respect to the family of Cantor sets in E^n .

PROOF. Let $J_0, J_1, J_2,...$ be the collection of all polygonal simple closed curves in $E^n - X$ all of whose vertices have rational coordinates. For each i set $A_0^i = J_i$ and find compact 2-dimensional polyhedra $A_1^i \subset A_2^i \subset \cdots \subset A_i^i \subset P_i$ in $E^n - X$ so that each has boundary J_i and the inclusion from A_{j-1}^i into A_j^i and from A_i^i into P_i is trivial on first homology for all $j, 1 \le j \le i$. It may be helpful to think of P_i as a "grope" as described by J. W. Cannon [C]. The construction of P_i depends on the fact that a 1-cycle in $E^n - X$ bounds homologically in $E^n - X$ [H-W].

Let $a_i = \operatorname{rank} H_1(P_i) + 1$. Let Y be a ramified Bing Cantor set with respect to the sequence a_0, a_1, a_2, \ldots . Let M_0, M_1, \ldots be a special defining sequence for Y. Recall that M_{2i+1} is obtained by taking an a_i -fold ramification of each component of M_{2i} . The manifold M_{2i+2} has two components in each component of M_{2i+1} that are embedded in the way that $T_1 \cup T_2$ is embedded in T in §6.

We now suppose that $h: E^n \to E^n$ is a homeomorphism so that $h(Y) \subset X$. We assume, for simplicity, in what follows that h is the identity homeomorphism. Some polygonal simple closed curve J_i must link M_0 . In M_{2i} we find 2^i components, designated \tilde{M}_{2i} , that lie in M_0 in the same manner as W_i is embedded in W_0 in the Bing Cantor set construction. By Theorem 8.2 there is a map $f: S^1 \to A_i^i$ that links some component V of \tilde{M}_{2i} . Let $V(1), V(2), \ldots, V(a_i)$ be the components of M_{2i+1} in V. We assume P_i is in general position with each V(j). For each $j, Q_j = V(j) \cap P_i$ is a two complex, Bd $Q_j \subset \operatorname{Bd} V_j$, and Int Q_j is open in P_i . Since $a_i > \operatorname{rank} H_1(P_i)$, Theorem 7.5 shows that Q_j is a pseudo disk with holes for some fixed j. Since Q_j misses X (and therefore Y), the inclusion of Q_j into V(j) is I-inessential. Recall that the inclusion of A_i^i into P_i is trivial on first homology. Therefore, we can invoke Theorem 7.8 to see that the map f does not link V(j). However, this implies that f does not link V, a contradiction.

REFERENCES

[[]A] L. Antoine, Sur l'homeomorphie de deux figures et de leur voisinages, J. Math. Pures Appl. 86 (1921), 221-325.

[[]Bi₁] R. H. Bing, Tame Cantor sets in E³, Pacific J. Math. 11 (1961), 435-446.

[[]Bi₂] _____, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. (2) **56** (1952), 354–362.

D. G. WRIGHT

- $[\mathbf{Bo_1}]$ H. G. Bothe, Universalmengen bezuglich der Lage im E^n , Fund. Math. 56 (1964), 203-212.
- $[\mathbf{Bo_2}]$ _____, Zur Lage null-und eindimensionaler Punktmengen in E^3 , Fund. Math. 58 (1966), 1–30.
- [Bo₃] _____, Zwei Universalmengen im euklidischen Raum, Math. Nachr. 39 (1969), 117-133.
- $[\mathbf{Bo_4}]$ _____, Ein eindimensionales Kompaktum in E^3 , das sich nicht lagetreu in die Mengersche Universalkurve einbetten laesst, Fund. Math. **54** (1964), 251–258.
- [C] J. W. Cannon, The recognition problem: What is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978), 832-866.
- [C-D] J. W. Cannon and R. J. Daverman, Cell-like decompositions arising from mismatched sewings: applications to 4-manifolds, Fund. Math. 111 (1981), 211-233.
 - [D₁] R. J. Daverman, On the scarcity of tame disks in certain wild cells, Fund. Math. 79 (1973), 63-77.
- [D₂] _____, On the absence of tame disks in certain wild cells, Geometric Topology (Proc. Geometric Topology Conf., Park City, Utah, 1974) (L. C. Glaser and T. B. Rushing, editors), Springer-Verlag, Berlin and New York, 1975, pp. 142–155.
- [Ea] W. T. Eaton, A generalization of the dog bone space to Eⁿ, Proc. Amer. Math. Soc. 39 (1973), 379-387.
- [Ed] R. D. Edwards, *Demension theory*. I, Geometric Topology (Proc. Geometric Topology Conf., Park City, Utah, 1974) (L. C. Glaser and T. B. Rushing, editors), Springer-Verlag, Berlin and New York, 1975, pp. 195–211.
 - [H-W] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1941.
- [M-R] D. R. McMillan and H. Row, Tangled embeddings of one-dimensional continua, Proc. Amer. Math. Soc. 22 (1969), 378-385.
 - [Sp] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
 - [S] M. Starbird, There is no universal Cantor set in E^3 , preprint.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37996-1300

Current address: Department of Mathematics, Utah State University, Logan, Utah 84322